Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 31, 473–521 (1993).
Google Scholar
Netzer, H. Revisiting the unified model of active galactic nuclei. Annu. Rev. Astron. Astrophys. 53, 365–408 (2015).
Google Scholar
Wu, X.-B. et al. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature 518, 512–515 (2015).
Google Scholar
Wolf, C. et al. The accretion of a solar mass per day by a 17-billion solar mass black hole. Nat. Astron. 8, 520–529 (2024).
Google Scholar
Volonteri, M., Haardt, F. & Madau, P. The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. Astrophys. J. 582, 559–573 (2003).
Google Scholar
Hopkins, P. F., Hernquist, L., Cox, T. J. & Kereš, D. A cosmological framework for the co-evolution of quasars, supermassive black holes, and elliptical galaxies. I. Galaxy mergers and quasar activity. Astrophys. J. Suppl. Ser. 175, 356–389 (2008).
Google Scholar
Ellison, S. L., Patton, D. R., Mendel, J. T. & Scudder, J. M. Galaxy pairs in the Sloan Digital Sky Survey. IV. Interactions trigger active galactic nuclei. Mon. Not. R. Astron. Soc. 418, 2043–2053 (2011).
Google Scholar
Trakhtenbrot, B. et al. ALMA observations show major mergers among the host galaxies of fast-growing, high-redshift supermassive black holes. Astrophys. J. 836, 8 (2017).
Google Scholar
Decarli, R. et al. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6. Nature 545, 457–461 (2017).
Google Scholar
Goulding, A. D. et al. Galaxy interactions trigger rapid black hole growth: an unprecedented view from the Hyper Suprime-Cam survey. Publ. Astron. Soc. Jpn 70, S37 (2018).
Google Scholar
Fogasy, J., Knudsen, K. K., Drouart, G., Lagos, C. D. P. & Fan, L. SMM J04135+10277: a distant QSO-starburst system caught by ALMA. Mon. Not. R. Astron. Soc. 493, 3744–3756 (2020).
Google Scholar
Hopkins, P. F. & Elvis, M. Quasar feedback: more bang for your buck. Mon. Not. R. Astron. Soc. 401, 7–14 (2010).
Google Scholar
Dubois, Y. et al. The HORIZON-AGN simulation: morphological diversity of galaxies promoted by AGN feedback. Mon. Not. R. Astron. Soc. 463, 3948–3964 (2016).
Google Scholar
Pontzen, A. et al. How to quench a galaxy. Mon. Not. R. Astron. Soc. 465, 547–558 (2017).
Google Scholar
Moiseev, A. V. & Smirnova, A. A. Ionizing spotlight of active galactic nucleus. Galaxies 11, 118 (2023).
Google Scholar
Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).
Google Scholar
Hirschmann, M., Somerville, R. S., Naab, T. & Burkert, A. Origin of the antihierarchical growth of black holes. Mon. Not. R. Astron. Soc. 426, 237–257 (2012).
Google Scholar
Tang, S. et al. Morphological asymmetries of quasar host galaxies with Subaru Hyper Suprime-Cam. Mon. Not. R. Astron. Soc. 521, 5272–5297 (2023).
Google Scholar
Noterdaeme, P. et al. Proximate molecular quasar absorbers. Excess of damped H2 systems at zabs ≈ zQSO in SDSS DR14. Astron. Astrophys. 627, A32 (2019).
Google Scholar
Popesso, P. et al. The main sequence of star-forming galaxies across cosmic times. Mon. Not. R. Astron. Soc. 519, 1526–1544 (2023).
Google Scholar
Rahmati, A. & Schaye, J. Predictions for the relation between strong Hi absorbers and galaxies at redshift 3. Mon. Not. R. Astron. Soc. 438, 529–547 (2014).
Google Scholar
Noterdaeme, P. et al. A connection between extremely strong damped Lyman-α systems and Lyman-α emitting galaxies at small impact parameters. Astron. Astrophys. 566, A24 (2014).
Google Scholar
Krogager, J. K., Møller, P., Fynbo, J. P. U. & Noterdaeme, P. Consensus report on 25 yr of searches for damped Ly α galaxies in emission: confirming their metallicity-luminosity relation at z ≳ 2. Mon. Not. R. Astron. Soc. 469, 2959–2981 (2017).
Google Scholar
Krogager, J.-K. et al. High-redshift damped Ly α absorbing galaxy model reproducing the NH i – Z distribution. Mon. Not. R. Astron. Soc. 495, 3014–3021 (2020).
Google Scholar
Di Matteo, T., Croft, R. A. C., Springel, V. & Hernquist, L. The cosmological evolution of metal enrichment in quasar host galaxies. Astrophys. J. 610, 80–92 (2004).
Google Scholar
Ledoux, C., Petitjean, P., Fynbo, J. P. U., Møller, P. & Srianand, R. Velocity-metallicity correlation for high-z DLA galaxies: evidence of a mass-metallicity relation? Astron. Astrophys. 457, 71–78 (2006).
Google Scholar
Balashev, S. A. et al. CO-dark molecular gas at high redshift: very large H2 content and high pressure in a low-metallicity damped Lyman alpha system. Mon. Not. R. Astron. Soc. 470, 2890–2910 (2017).
Google Scholar
Ranjan, A. et al. Molecular gas and star formation in an absorption-selected galaxy: hitting the bull’s eye at z ≃ 2.46. Astron. Astrophys. 618, A184 (2018).
Google Scholar
Balashev, S. A. et al. X-shooter observations of strong H2-bearing DLAs at high redshift. Mon. Not. R. Astron. Soc. 490, 2668–2678 (2019).
Google Scholar
Shull, J. M., Danforth, C. W. & Anderson, K. L. A far ultraviolet spectroscopic explorer survey of interstellar molecular hydrogen in the Galactic disk. Astrophys. J. 911, 55 (2021).
Google Scholar
Boissé, P. et al. A far UV study of interstellar gas towards HD 34078: high excitation H2 and small scale structure. Astron. Astrophys. 429, 509–523 (2005).
Google Scholar
Urrutia, T., Lacy, M. & Becker, R. H. Evidence for quasar activity triggered by galaxy mergers in HST observations of dust-reddened quasars. Astrophys. J. 674, 80–96 (2008).
Google Scholar
Glikman, E. et al. Major mergers host the most-luminous red quasars at z ~ 2: a Hubble Space Telescope WFC3/IR study. Astrophys. J. 806, 218 (2015).
Google Scholar
Hennebelle, P. & Falgarone, E. Turbulent molecular clouds. Astron. Astrophys. Rev. 20, 55 (2012).
Google Scholar
McCourt, M., Oh, S. P., O’Leary, R. & Madigan, A.-M. A characteristic scale for cold gas. Mon. Not. R. Astron. Soc. 473, 5407–5431 (2018).
Google Scholar
Arav, N., Barlow, T. A., Laor, A. & Blandford, R. D. Keck high-resolution spectroscopy of MRK 335: constraints on the number of emitting clouds in the broad-line region. Mon. Not. R. Astron. Soc. 288, 1015–1021 (1997).
Google Scholar
Balashev, S. A. & Noterdaeme, P. Molecular hydrogen in absorption at high redshifts. Exp. Astron. 55, 223–239 (2023).
Google Scholar
Kosenko, D. N., Balashev, S. A. & Klimenko, V. V. Cold diffuse interstellar medium of Magellanic Clouds. II. Physical conditions from excitation of C i and H2. Mon. Not. R. Astron. Soc. 528, 5065–5079 (2024).
Google Scholar
Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).
Google Scholar
Noterdaeme, P. et al. Proximate molecular quasar absorbers. Chemical enrichment and kinematics of the neutral gas. Astron. Astrophys. 673, A89 (2023).
Google Scholar
Hunter, T. R. et al. The ALMA interferometric pipeline heuristics. Publ. Astron. Soc. Pac. 135, 074501 (2023).
Google Scholar
Tanaka, M. et al. Hyper Suprime-Cam legacy archive. Publ. Astron. Soc. Jpn 73, 735–746 (2021).
Google Scholar
Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).
Google Scholar
Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).
Google Scholar
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).
Google Scholar
Serra, P. et al. SOFIA: a flexible source finder for 3D spectral line data. Mon. Not. R. Astron. Soc. 448, 1922–1929 (2015).
Google Scholar
Westmeier, T. et al. SOFIA 2 – an automated, parallel H i source finding pipeline for the WALLABY survey. Mon. Not. R. Astron. Soc. 506, 3962–3976 (2021).
Google Scholar
Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with Bagpipes: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).
Google Scholar
Carnall, A. C. et al. How to measure galaxy star formation histories. I. Parametric models. Astrophys. J. 873, 44 (2019).
Google Scholar
Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).
Google Scholar
Draine, B. T. & Li, A. Infrared emission from interstellar dust. IV. The silicate-graphite-PAH model in the post-Spitzer era. Astrophys. J. 657, 810–837 (2007).
Google Scholar
Solomon, P. M. & Vanden Bout, P. A. Molecular gas at high redshift. Annu. Rev. Astron. Astrophys. 43, 677–725 (2005).
Google Scholar
Boogaard, L. A. et al. The ALMA spectroscopic survey in the Hubble ultra deep field: CO excitation and atomic carbon in star-forming galaxies at z = 1–3. Astrophys. J. 902, 109 (2020).
Google Scholar
Carilli, C. L. & Walter, F. Cool gas in high-redshift galaxies. Annu. Rev. Astron. Astrophys. 51, 105–161 (2013).
Google Scholar
Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013).
Google Scholar
Sargent, M. T. et al. Regularity underlying complexity: a redshift-independent description of the continuous variation of galaxy-scale molecular gas properties in the mass-star formation rate plane. Astrophys. J. 793, 19 (2014).
Google Scholar
Calistro Rivera, G. et al. Resolving the ISM at the peak of cosmic star formation with ALMA: the distribution of CO and dust continuum in z ~ 2.5 submillimeter galaxies. Astrophys. J. 863, 56 (2018).
Google Scholar
Vestergaard, M. & Peterson, B. M. Determining central black hole masses in distant active galaxies and quasars. II. Improved optical and UV scaling relationships. Astrophys. J. 641, 689–709 (2006).
Google Scholar
Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).
Google Scholar
Zahid, H. J., Geller, M. J., Fabricant, D. G. & Hwang, H. S. The scaling of stellar mass and central stellar velocity dispersion for quiescent galaxies at z < 0.7. Astrophys. J. 832, 203 (2016).
Google Scholar
Runnoe, J. C., Brotherton, M. S. & Shang, Z. Updating quasar bolometric luminosity corrections. Mon. Not. R. Astron. Soc. 422, 478–493 (2012).
Google Scholar
Selsing, J., Fynbo, J. P. U., Christensen, L. & Krogager, J. K. An X-shooter composite of bright 1 < z < 2 quasars from UV to infrared. Astron. Astrophys. 585, A87 (2016).
Google Scholar
Wang, J., Hall, P. B., Ge, J., Li, A. & Schneider, D. P. Detections of the 2175 Å dust feature at 1.4 < z < 1.5 from the Sloan Digital Sky Survey. Astrophys. J. 609, 589–596 (2004).
Google Scholar
Srianand, R., Gupta, N., Petitjean, P., Noterdaeme, P. & Saikia, D. J. Detection of the 2175 Å extinction feature and 21-cm absorption in two Mg ii systems at z ~ 1.3. Mon. Not. R. Astron. Soc. 391, L69–L73 (2008).
Google Scholar
Zhang, S. et al. Seven broad absorption line quasars with excess broadband absorption near 2250 Å. Astrophys. J. 802, 92 (2015).
Google Scholar
Noterdaeme, P. et al. Discovery of a Perseus-like cloud in the early Universe. H i-to-H2 transition, carbon monoxide and small dust grains at zabs ≈ 2.53 towards the quasar J0000+0048. Astron. Astrophys. 597, A82 (2017).
Google Scholar
Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U. & Wolff, M. J. A quantitative comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way ultraviolet to near-infrared extinction curves. Astrophys. J. 594, 279–293 (2003).
Google Scholar
Hamann, F. et al. Extremely red quasars in BOSS. Mon. Not. R. Astron. Soc. 464, 3431–3463 (2017).
Google Scholar
Veilleux, S. et al. The surprising absence of absorption in the far-ultraviolet spectrum of Mrk 231. Astrophys. J. 764, 15 (2013).
Google Scholar
Bergeron, J. & Boissé, P. Extent and structure of intervening absorbers from absorption lines redshifted on quasar emission lines. Astron. Astrophys. 604, A37 (2017).
Google Scholar
Lacour, S. et al. Velocity dispersion of the high rotational levels of H2. Astrophys. J. 627, 251–262 (2005).
Google Scholar
Noterdaeme, P. et al. Excitation mechanisms in newly discovered H2-bearing damped Lyman-α clouds: systems with low molecular fractions. Astron. Astrophys. 474, 393–407 (2007).
Google Scholar
Balashev, S. A., Varshalovich, D. A. & Ivanchik, A. V. Directional radiation and photodissociation regions in molecular hydrogen clouds. Astron. Lett. 35, 150–166 (2009).
Google Scholar
Noterdaeme, P. et al. Down-the-barrel observations of a multi-phase quasar outflow at high redshift. VLT/X-shooter spectroscopy of the proximate molecular absorber at z = 2.631 towards SDSS J001514+184212. Astron. Astrophys. 646, A108 (2021).
Google Scholar
Kosenko, D. N. et al. HD molecules at high redshift: cosmic ray ionization rate in the diffuse interstellar medium. Mon. Not. R. Astron. Soc. 505, 3810–3822 (2021).
Google Scholar
Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).
Google Scholar
Noterdaeme, P. et al. Spotting high-z molecular absorbers using neutral carbon. Results from a complete spectroscopic survey with the VLT. Astron. Astrophys. 612, A58 (2018).
Google Scholar
Balashev, S. A. & Kosenko, D. N. Neutral carbon in diffuse interstellar medium: abundance matching with H2 for damped Lyman alpha systems at high redshifts. Mon. Not. R. Astron. Soc. 527, 12109–12119 (2024).
Google Scholar
Schroder, K., Staemmler, V., Smith, M. D., Flower, D. R. & Jaquet, R. Excitation of the fine-structure transitions of C in collisions with ortho- and para-H2. J. Phys. B: At. Mol. Phys. 24, 2487–2502 (1991).
Google Scholar
Abrahamsson, E., Krems, R. V. & Dalgarno, A. Fine-structure excitation of O i and C i by impact with atomic hydrogen. Astrophys. J. 654, 1171–1174 (2007).
Google Scholar
Staemmler, V. & Flower, D. R. Excitation of the C(2p2. 3Pj) fine structure states in collisions with He(1s2 1S0). J. Phys. B: At. Mol. Phys. 24, 2343–2351 (1991).
Google Scholar
Le Petit, F., Nehmé, C., Le Bourlot, J. & Roueff, E. A model for atomic and molecular interstellar gas: the Meudon PDR code. Astrophys. J. Suppl. Ser. 164, 506–529 (2006).
Google Scholar
Klimenko, V. V. & Balashev, S. A. Physical conditions in the diffuse interstellar medium of local and high-redshift galaxies: measurements based on the excitation of H2 rotational and C i fine-structure levels. Mon. Not. R. Astron. Soc. 498, 1531–1549 (2020).
Google Scholar
Sternberg, A., Le Petit, F., Roueff, E. & Le Bourlot, J. H i-to-H2 transitions and H i column densities in galaxy star-forming regions. Astrophys. J. 790, 10 (2014).
Google Scholar
Bialy, S. & Sternberg, A. Analytic H i-to-H2 photodissociation transition profiles. Astrophys. J. 822, 83 (2016).
Google Scholar
Astropy Collaboration. et al. The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2022).
Google Scholar
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
Google Scholar
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
Google Scholar
Bradley, L. et al. astropy/photutils: 1.12.0. Zenodo https://doi.org/10.5281/zenodo.10967176 (2024).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Google Scholar